Flow and heat transfer characteristics in wire-wrap tight lattice rod bundle have been investigated through CFD code ANSYS CFX 13.0. The bundle consists of 19 fuel rods with triangular tight lattice configuration. The rod ratio of rod pitch to rod diameter is 1.167. Four wires with a diameter of 0.5 mm are helically wrapped on the surface of each fuel rod. The ratio of wire-wrap helical pitch to the rod diameter is varied from 27.5 to 52.5.

Through simulating wire-wrap 3-rod bundle with tetrahedron and hexahedron grid systems, the grid system which applies to simulating the wire-wrap tight lattice rod bundle has been obtained.

The predicted results of eddy viscosity based turbulence models (k–ε, SST) and Reynolds stress turbulence models (BSL, SSG) are compared with each other and several experimental correlations for friction factor and Nusselt number. The predicted results of all the turbulence models are almost the same in some respects, but the friction factor predicted by the eddy viscosity models is higher than that predicted by the RSM.

The effect of wire-wrap on pressure drop, friction factor, secondary flow, heat transfer, velocity distribution and temperature distribution in different subchannels (interior, edge and corner) has been analyzed by comparing with those of the bare rod bundle. The effect of wire-wrap pitch on the flow and heat transfer characteristics has also been studied.

This content is only available via PDF.
You do not currently have access to this content.