The nuclear thermal rocket is one of the candidate propulsion systems for future space exploration including traveling to Mars and other planets of the solar system. Nuclear thermal propulsion can provide a much higher specific impulse than the best chemical propulsion available today. A basic nuclear propulsion system consists of one or several nuclear reactors that heat hydrogen propellant to high temperatures and then allow the heated hydrogen and its reacting product to flow through a nozzle to produce thrust. This paper presents computational study on a single flow element in a nuclear thermal rocket. The computational results provide both detailed and global thermo-fluid environments of a single flow element for thermal stress estimation and insight for possible occurrence of mid-section corrosion.

This content is only available via PDF.
You do not currently have access to this content.