In order to enhance the efficiency of current light water reactors, the generation IV initiative has included the supercritical water reactor (SCWR) as one of the future designs. The rapid change in density in the vicinity of the pseudo-critical temperature leads to strong buoyancy effect at low flow rates and flow acceleration at high flow rates, both of which significantly influence heat transfer characteristics. Experimental investigation of such phenomena being very cumbersome and cost-intensive, numerical simulation using CFD tools is considered to be a useful option for providing better understanding of the heat transfer mechanisms in geometries and conditions typical of SCWR. The present work involves numerical analysis of the heat transfer deterioration (HTD) phenomenon in turbulent flow of supercritical water through a vertical annular channel. ANSYS-CFX 14.0 software was employed for the same. An annular fluid domain, with a heated inner wall and an insulated outer wall, was modeled and the flow was considered to be in the upward and downward directions. Grid independence study was conducted with structured mesh. The results were compared with those reported in the published literature. It is known that the HTD phenomenon causes a sudden rise in the wall temperature, and hence it is necessary to predict the effect of changes in operating and design parameters. Parametric study was done by varying pressure, inlet temperature, heat flux and mass flux. Annuli of different hydraulic diameters were also considered.

This content is only available via PDF.
You do not currently have access to this content.