Traveling wave reactor is a kind of nuclear reactor that can convert fertile material into fissile fuel as it runs using the process of nuclear transmutation. In the ignition stage of traveling wave reactor, the core performance is especially complex, since the fissile fuel and fertile material is put in different regions at the beginning. And the distribution of power density will change severely with burn-up during the reactor operation. It is an important part of the traveling wave reactor study to optimize the design of the ignition stage.

In this paper, based on a two-dimensional RZ geometry model, some schemes with different sizes and compositions of the ignition zone, middle ignition zone position design and burnable neutron poison addition are simulated and analyzed. Finally, an optimized core design with multi-zone configuration and burnable neutron poison addition is shown. Some design outlines are introduced for further study.

This content is only available via PDF.
You do not currently have access to this content.