In order to verify the seismic capacity of reinforced concrete containment vessel (RCCV) under the design earthquake level of SL-2 (peak acceleration 0.25g), shaking table tests of a 1:15 model RCCV are carried out. The El Centro earthquake motion record, the Taft earthquake motion record as well as an artificial earthquake acceleration are employed as the input excitations. There are three load cases for each test stage, with the peak ground acceleration (PGA) being 0.1g, 0.2g and 0.3g, respectively, corresponding to 0.088g, 0.175g and 0.263g for the prototype RCCV structure because of the acceleration ratio of 1.14. The test results indicate that under the earthquake excitation of the acceleration peak 0.1g, 0.2g and 0.3g, the tensile strains at monitoring points on the cylinder don’t reach the cracking level. Using the general-purpose nonlinear finite element analysis program ANSYS, a three-dimensional (3D) model of the scaled model reinforced concrete containment vessel is modeled. The numerical simulation analysis results could match the results of the tests very well. It is shown by the results of the shaking table tests that the model RCCV is still within the elastic range as a whole. In order to analyze the yield displacement of the RCCV, a static nonlinear pushover analysis of the RCCV is carried out. The result shows that the RCCV had sufficient seismic safety margin.

This content is only available via PDF.
You do not currently have access to this content.