In this paper, the author continues his investigation on the scientific basis of water chemistry specifications by applying his recent theory, which integrates the elemental radiation- and electro-chemistry reactions in the “Butlar-Volmer equation.” The B-V equation is well established as the basic material balance equation in corrosion science.

The author’s new approach has been compared with the published in-pile test results of the electrochemical potential differences between the in-flux and out-flux regions for both the PWR- and BWR water chemistry environment. Although the theoretical estimation generally reproduced the experimental results, there remains significant deviation from the experimental results at the very low DH region (<10cc-STP/kg-water) in PWRs as well as the low DO region (<10ppb) in BWRs. Although these regions are outside of the water chemistry specifications of general interest, the scientific causes of the deviation must be clarified.

In this paper, the author found that the deviations are due to the dominant radiation-chemical reactions involving hydrogen ions and hydrogen peroxide at the lower ends. Although the radiation- and electrochemical reaction was further exploited with respect to the potential differences induced by the hydrogen peroxide, the effects were disappointingly small, when estimated in terms of a mixed potential of the electrode reactions. This leads the author to suspect that hydrogen-ion-radical reactions should be the main causes. Currently further analyses are in progress.

This content is only available via PDF.
You do not currently have access to this content.