Degraded steam generator tubing can affect its safety functions. Therefore, its integrity should be maintained for each degradation form and all detected degradation must be assessed to verify that if adequate integrity is retained. Determination of tube integrity limits includes identifying acceptable structural parameters such as flaw length, depth, and amplitude of signals. If we consider just single-cracked tubes, short and deep flaws are not likely to threaten structural integrity of tubes. But if it has multiple-cracks, we have to consider interaction effects of multiple adjacent cracks on its burst pressure. Because adjacent multiple cracks can be merged due to the crack growth then it can challenge against the structural performance limit. There are some studies on the interaction effects of adjacent cracks. However, existing works on the interaction effect consider only through-wall cracks. No study has been carried out on the interaction effects of part-through cracks. Most cracks existing in real steam generator tubing are not through-wall cracks but part-through cracks. Hence, integrity of part-through cracks is more practical issue than that of through-wall cracks.

This paper presents experimental burst test results with steam generator tubing for evaluation of interaction effects with axial oriented two collinear and parallel part-through cracks. The interaction effect between two adjacent cracks disappeared when the distance exceeds about 2 mm.

This content is only available via PDF.
You do not currently have access to this content.