A reduced-activation ferritic/martensitic (RAF/M) steel, JLF-1, is considered as one of the candidate structure material of the fusion reactors and supercritical water-cooled reactor (SCWR). Low cycle fatigue properties of JLF-1 steel at elevated temperature are the design base to provide adequate design margin against postulated mechanism that could experience during its design life, such as stress range, plastic deformation, and cyclic softening etc. However, the reduction in design margin is significant when the cyclic softening happens in cyclic deformation at RT, 673K, 873K. Thus, for the application as the structural materials, it is necessary to evaluate low cycle fatigue behavior and cyclic softening of JLF-1 steel at elevated temperature since those properties of material at elevated temperature are the key issue for design.

This content is only available via PDF.
You do not currently have access to this content.