Abstract

The sensitivity analysis of the dynamical response of reactor coolant system to the input parameters is an important precondition for the design optimization. In this paper, the sensitivity of the dynamical loads at the nozzles of the equipment under seismic conditions is analyzed with an integrated platform called OPTIMUS, taking the stiffness of the dampers in the steam generator and the main pump as the input variables. The key parameters of the reactor system are usually different from the design value due to the calculation error, random and other uncontrollable errors in the manufacturing process and installation process. In a nuclear power project, the measured stiffness values of the dampers on the steam generator and the main pump in the manufacturer are deviated from the requirements in the equipment specification, and it is necessary to evaluate the influence of the deviation on the dynamical response analysis of the reactor system.

According to the traditional method, it is necessary to establish the models of the reactor coolant system for nonlinear analysis according to the different stiffness of the dampers, and then the calculation results are compared by EXCEL. In this paper, the sensitivity analysis of output parameters which are the loads at the nozzles of the equipment to the input parameters which are the stiffness of the dampers on the steam generator and pump is realized by OPTIMUS, which is a kind of integration platform. Not only can ANSYS simulation calculations be carried out automatically on the OPTIMUS, but also the output data can be processed rapidly automatically, and the influence of manufacturing deviation of the stiffness of the dampers on the dynamical response of the reactor coolant system can be analyzed quantitatively in the above-mentioned problems, and the data support is provided for the determination of the design variables for subsequent optimization analysis.

This content is only available via PDF.
You do not currently have access to this content.