Abstract

In Sodium-cooled Fast Reactors (SFRs), it is important to optimize the design and operate decay heat removal systems for safety enhancement against severe accidents which could lead to core melting. It is necessary to remove the decay heat from the molten fuel which relocated in the reactor vessel after the severe accident. Thus, the water experiments using a 1/10 scale experimental apparatus (PHEASANT) simulating the reactor vessel of SFR were conducted to investigate the natural circulation phenomena in a reactor vessel. In this paper, the natural circulation flow field in the reactor vessel was measured by the Particle Image Velocimetry (PIV) method. The PIV measurement was carried out under the operation of the dipped-type direct heat exchanger (DHX) installed in the upper plenum when 20% of the core fuel fell to the lower plenum and accumulated on the core catcher. From the results of PIV measurement, it was quantitatively confirmed that the upward flow occurred at the center region of the lower and the upper plenums. In addition, the downward flows were confirmed near the reactor vessel wall in the upper plenum and through outermost layer of the simulated core in the lower plenum. Moreover, the relationship between the temperature field and the velocity field was investigated in order to understand the natural circulation phenomenon in the reactor vessel. From the above results, it was confirmed that the natural circulation cooling path was established under the dipped-type DHX operation.

This content is only available via PDF.
You do not currently have access to this content.