A visualized experimental system is designed and constructed to investigate the bubble dynamic in a flowing liquid layer. Motivated by reducing uncertainties and digging a deep understand on the formation mechanism of boiling bubbles, the bubbles are formed by injecting air through a submerged orifice in our present work, where the influence of thermal physics, nucleation site density and dry spot are stripped. The water flow rate and the air flow rate are in the range of 72–324 ml/min and 0.8–2.0 ml/min, respectively. The bubble formation process in the smooth channel and the rib channel are investigated. The results state that increasing the liquid flow rates lead to the increasing bubble detachment frequency and the decreasing bubble detachment volume. Besides, the larger the liquid flow rate is, the closer the bubble center of mass is to the wall. The rib has a significant influence on the bubble formation process. In the rib channel, it is more difficult for bubbles to detach from the orifice compared that in a smooth channel. Besides, the bubble detachment volume in a rib channel is larger than it in a smooth channel.

This content is only available via PDF.
You do not currently have access to this content.