Abstract
In-vessel retention (IVR) consists in cooling the molten corium contained in the lower head of reactor vessel by natural convection and reactor cavity flooding. The general approach which is used to study IVR problems is a “bounding” approach which consists in assuming a specified corium pool stratification in the vessel and then demonstrating that the vessel can cope with the resulting thermal and mechanical loads. Thermal loading on the vessel is controlled by the convective heat transfer inside the molten corium pool. Traditionally molten corium pool in the lower head was expected to stratify into two-layer with the dense oxide pool at the bottom and the light metal layer on the top. Based on the MASCA experiments, the increased density of the metal layer attributed to a transfer of uranium metal leads to inverse stratification with a heavy metal layer relocating below the oxide pool. This behavior can be explained by physicochemical interaction between the oxidic and metallic phases of the corium pool. Therefore, a methodology which couples physicochemical effects and thermal hydraulics has been developed to address the IVR issue. The main purpose of this paper is to present this methodology and its application for calculate stratification probability of two-layer and three-layer configuration, analyze the safety margin of IVR in two-layer and three-layer configuration, and evaluate the lower head heat thermal failure probability.