Abstract

Background: When terminal stage of Severe Accident (SA) with no coolant injection at a nuclear power plant, the equipment that has cooled and solidified through water injection to a molten core that has ex-vessel and fallen outside of the pressure vessel will then be required to operate autonomously by heat detection, without external signals or power (e.g. electricity, air). The fusible plug operation is triggered by fusible alloy which receives heat from molten core and will melt. Because the fusible plug is also the boundary of Suppression Pool (S/P), high reliability is required for sealing performance. It is for that reason that Hitachi GE Nuclear Energy Ltd. (Hitachi-GE) has developed a fusible plug to serve as a device necessary to operate this system.

Features of the Fusible Plug: The autonomous operation of the fusible plug is triggered by the melting of a fusible alloy, which is part of the fusible plug. However, the fusible alloy has a remarkably low mechanical strength and therefore is not suitable as a strength member. As such, it is necessary to ensure reliable plug sealing without applying a load to the fusible alloy so as to prevent the fusible plug from malfunctioning during normal operation. Therefore, to reduce the load to be applied to the fusible alloy, Hitachi-GE has developed a fusible plug structure that operates autonomously by detecting the ambient temperature without using the fusible alloy as a strength member. We have performed a verification test using this fusible plug and confirmed that it satisfies the predetermined performance requirements.

Future Actions: Hitachi-GE is holding discussions on using the fusible plug at nuclear power plants in Japan. In the future, we plan to expand to the overseas.

This content is only available via PDF.
You do not currently have access to this content.