As a preliminary investigation into the establishment of a lithium removal technique for the components used at the International Fusion Materials Irradiation Facility (IFMIF), experiments were performed on the dissolution of lithium in three solvents: ethanol, pure water, and ethanol–water. In these experiments, hemispherical lithium was immersed in the solvents at constant temperatures, and the degree of dissolution was measured continuously from the height of the sample. From the obtained data, the average dissolution rate in the solvents at each testing temperature (10–90 °C) and the amount of hydrogen generated by the chemical reaction were calculated. The average dissolution rates in ethanol, pure water, and ethanol–water at 30 °C were 0.01, 1.6, and 0.43 mm/min, respectively. Although the average dissolution rate increased with the testing temperature in the low-temperature range (10–50 °C) for all solvents, this increase was saturated in the high-temperature range (50–90 °C) in experiments with pure water and ethanol–water as solvents. The volume of gas collected during each experiment was in good agreement with the volume of hydrogen assumed to be generated from the chemical reaction of lithium with the solvents.

This content is only available via PDF.
You do not currently have access to this content.