A RELAP5-3D input deck of the South Texas Project (STP) power plant was created in order to study the thermal-hydraulic behavior of the plant during normal operation (steady-state) and during a Loss of Coolant Accident (LOCA). It is important to study the sensitivity of selected output parameters such as the total coolant mass flow rate, the peak clad temperature, the secondary pressure, as a function of specific input parameters (reactor nominal power, vessel inlet temperature, steam generators primary side heat transfer coefficient, primary pressure etc.) in order to identify the variables that play a role in the uncertainty of the thermal-hydraulic calculations. RELAP5-3D, one of the most used best estimate thermal-hydraulic system codes, was coupled with DAKOTA, developed by Sandia National Laboratory for Uncertainty Quantification and Sensitivity Analysis in order to simplify the simulation process and the analysis of the results. In the present paper, the results of the sensitivity study for selected output parameters of the steady-state simulations are presented. The coupled software was validated by repeating one set of simulations using the RELAP5-3D standalone version and by analyzing the simulation results with respect of the physical expectations and behavior of the power plant. The thermal-hydraulic parameters of interest for future uncertainty quantification calculations were identified.

This content is only available via PDF.
You do not currently have access to this content.