The NURESIM and NURISP successive projects of the 6th and 7th European Framework Programs joined the efforts of 21 partners for developing and validating a reference multi-physics and multi-scale platform for reactor simulation. The platform includes system codes, component codes, and also CFD or CMFD simulation tools. Fine scale CFD simulations are useful for a better understanding of physical processes, for the prediction of small scale geometrical effects and for solving problems that require a fine space and/or time resolution. Many important safety issues usually treated at the system scale may now benefit from investigations at a CFD scale. The Pressurized Thermal Shock is investigated using several simulation scales including Direct Numerical Simulation, Large Eddy Simulation, Very Large Eddy Simulation and RANS approaches. At the end a coupling of system code and CFD is applied. Condensation Induced Water-Hammer was also investigated at both CFD and 1-D scale. Boiling flow in a reactor core up to Departure from Nucleate Boiling or Dry-Out is investigated at scales much smaller than the classical subchannel analysis codes. DNS was used to investigate very local processes whereas CFD in both RANS and LES was used to simulate bubbly flow and Euler-Lagrange simulations were used for annular mist flow investigations. Loss of Coolant Accidents are usually treated by system codes. Some related issues are now revisited at the CFD scale. In each case the progress of the analysis is summarized and the benefit of the multi-scale approach is shown.
- Nuclear Engineering Division
- Power Division
Multi-Scale Thermalhydraulic Analyses Performed in NURESIM and NURISP Projects
Bestion, D, Lucas, D, Anglart, H, Niceno, B, & Vyskocil, L. "Multi-Scale Thermalhydraulic Analyses Performed in NURESIM and NURISP Projects." Proceedings of the 2012 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference. Volume 4: Codes, Standards, Licensing, and Regulatory Issues; Fuel Cycle, Radioactive Waste Management and Decommissioning; Computational Fluid Dynamics (CFD) and Coupled Codes; Instrumentation and Controls; Fuels and Combustion, Materials Handling, Emissions; Advanced Energy Systems and Renewables (Wind, Solar, Geothermal); Performance Testing and Performance Test Codes. Anaheim, California, USA. July 30–August 3, 2012. pp. 581-590. ASME. https://doi.org/10.1115/ICONE20-POWER2012-54891
Download citation file: