The one dimensional two-fluid model is widely acknowledged as the most detailed and accurate macroscopic formulation model of the thermo-fluid dynamics in nuclear reactor safety analysis. Currently the prevailing one dimensional thermal hydraulics codes are first order accurate. The benefit of first order schemes is numerical viscosity, which serves as a regularization mechanism for many otherwise ill-posed two-fluid models. However, excessive diffusion in regions of large gradients leads to poor resolution of phenomena related to void wave propagation. In this work, a second order numerical method is developed for a standard two-fluid model code by applying a second order temporal scheme and a shock capturing scheme using a flux limiter formulation for the convection of void fraction and velocity. The classic water faucet problem is taken as the benchmark.

This content is only available via PDF.
You do not currently have access to this content.