A continuous uncontrolled Rod Cluster Control Assembly (RCCA) bank withdrawal at power belongs to group of Reactivity Initiated Accidents (RIA). It will cause an increase in core heat flux and a reactor coolant temperature rise. Unless terminated by manual or automatic action, the power mismatch and resultant coolant temperature rise could eventually result in departure from nucleate boiling (DNB) and/or fuel centreline melt. The accident can be DNBR or overpower limiting accident depending on initial power level and rate and amount of reactivity addition.

The Rod Withdrawal At Power (RWAP) accident was analyzed for NPP Krško to evaluate possible Resistance Temperature Detectors (RTD) bypass removal and introduction of thermowell for the average temperature measurement. The influence of different coolant temperature measurement delays to related protection system response and limiting system variables was studied first using point kinetics model as implemented in RELAP5 code. The selected scenario (maximum insertion rate with rods in manual mode) has been re-calculated using RELAP5/PARCS coupled code. Core wide departure from nucleate boiling ratio (DNBR) calculation has been performed at the end of the coupled code calculation using COBRA based model to determine minimum DNBR for hot channel. In order to assess available safety margins following such accident CIAU methodology has been applied to evaluate the uncertainty of RELAP5 analysis and modified CIAU/TN methodology to evaluate uncertainty of the three-dimensional neutronics/thermal-hydraulics calculations. Differences between system and coupled code results and uncertainties is discussed.

This content is only available via PDF.
You do not currently have access to this content.