Crushable material has widely been used as an engineering solution for energy absorption devices among many industries. Abnormal and severe accident loads in the design of nuclear power plants are required to be addressed in order to comply with Nuclear Regulatory Commission (NRC) requirements which makes the crushable material more suitable in its highly dynamic application. One of the severe loads is from a postulated high energy piping system rupture. Its effects are required to be mitigated so that the proper operation of safety related systems, structures and components (SSC) of these facilities is assured. The postulated pipe rupture loads are among the highest loads that need to be addressed in the design process of nuclear power plants.

The impact forces produced by the postulated pipe rupture are typically being absorbed by energy absorption devices called “Pipe Whip Restraints” in which the restraints can minimize the loads affecting the SSCs to within an acceptable limit. This paper provides a simplified closed-form solution to determine the energy absorbing characteristic that will help to design these devices. This paper will also provide a comparison between results of the proposed simplified closed-form solution equations to the experimental test results and the calculated results using finite element analysis.

This content is only available via PDF.
You do not currently have access to this content.