Today, commercial nuclear power plants are installing High-Density Polyethylene (HDPE) piping in non-safety-related and safety-related systems. HDPE has been chosen in limited quantity to replace carbon steel piping as it does not support rust, rot, or biological growth. However, due to its relatively short nuclear service history, developing a way to accurately evaluate joint integrity in HDPE is crucial to utilities and the U.S. Nuclear Regulatory Commission (USNRC). This paper will investigate using ultrasonic Phased Array to quantify detection of flaws and detrimental conditions in butt-fusion joints throughout the full spectrum of applicable HDPE pipe diameters and wall-thicknesses. Currently the most concerning joint condition is that of “Cold Fusion”. A cold-fused joint is created when molecules along the fusion line do not fully entangle or co-crystallize. Once the fusion process is complete, there is the appearance of a good, quality joint. However, the fabricated joint does not have the required strength as the co-crystallization along the pipe faces has not occurred. Therefore, performing a visual examination of the bead, as required by the current revision of ASME Code Case N-755, does not provide adequate assurance of joint integrity. As a potential solution, volumetric examination is being considered by the USNRC to safeguard against this and other types of detrimental conditions. Factors addressed will include pipe diameter, wall-thickness, fusing temperature, interfacial pressure, dwell (open/close) time, and destructive correlation with ultrasonic data.

This content is only available via PDF.
You do not currently have access to this content.