Liquid sloshing phenomenon is encountered whenever a liquid in a container has an unrestrained surface and can be excited. Specific type of sloshing motion can occur during the core meltdown of a liquid metal reactor (LMR) and can lead to a compaction of the fuel in the center of the core and to energetic nuclear power excursions. This phenomenon was studied in series of “centralized sloshing” experiments with a central water column collapsing inside the surrounding cylindrical tank. These experiments provide data for a benchmark exercise for accident analysis codes. To simulate “centralized sloshing” phenomenon a numerical method should be capable to predict motion of free surface of liquid, wave propagation and reflection from the walls. A meshless method based on Smoothed Particle Hydrodynamics (SPH) for the simulation of 3D free surface liquid motion has been developed. Proposed method is applied to the simulation of “centralized sloshing” experiments. Simulation results are compared with the experimental results as well as with results of computations performed with 3D code SIMMER-IV which is an advanced reactor safety analysis code that implements the traditional mesh-based numerical method. In series of numerical calculations it is shown that overall motion of the liquid is in a good agreement with experimental observations. Dependence on the initial and geometrical symmetry is studied and compared with experimental data.
Skip Nav Destination
18th International Conference on Nuclear Engineering
May 17–21, 2010
Xi’an, China
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
978-0-7918-4932-3
PROCEEDINGS PAPER
Analysis of Central Sloshing Experiment Using Smoothed Particle Hydrodynamics (SPH) Method
Alexander Vorobyev,
Alexander Vorobyev
Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
Search for other works by this author on:
Vladimir Kriventsev,
Vladimir Kriventsev
Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
Search for other works by this author on:
Werner Maschek
Werner Maschek
Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
Search for other works by this author on:
Alexander Vorobyev
Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
Vladimir Kriventsev
Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
Werner Maschek
Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
Paper No:
ICONE18-29805, pp. 751-759; 9 pages
Published Online:
April 8, 2011
Citation
Vorobyev, A, Kriventsev, V, & Maschek, W. "Analysis of Central Sloshing Experiment Using Smoothed Particle Hydrodynamics (SPH) Method." Proceedings of the 18th International Conference on Nuclear Engineering. 18th International Conference on Nuclear Engineering: Volume 4, Parts A and B. Xi’an, China. May 17–21, 2010. pp. 751-759. ASME. https://doi.org/10.1115/ICONE18-29805
Download citation file:
5
Views
Related Proceedings Papers
Related Articles
Investigation of Wave Characteristics in Oscillatory Motion of Partially Filled Rectangular Tanks
J. Fluids Eng (April,2018)
Motion Control of a Container With Slosh: Constrained Sliding Mode Approach
J. Dyn. Sys., Meas., Control (May,2010)
In-Plane Wave Propagation Through Elastic Solids With a Periodic Array of Rectangular Defects
J. Appl. Mech (March,2002)
Related Chapters
New Generation Reactors
Energy and Power Generation Handbook: Established and Emerging Technologies
Insights and Results of the Shutdown PSA for a German SWR 69 Type Reactor (PSAM-0028)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Application of Probabilistic Methods for the Evaluation of Deterministic Deviations from Technical Specifications (PSAM-0277)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)