Two-phase natural circulation flow instability under rolling motion condition was studied experimentally and theoretically. Experimental data were analyzed with nonlinear time series analysis methods. The embedding dimension, correlation dimension and K2 entropy were determined based on phase space reconstruction theory and G-P method. The maximal Lyapunov exponent was calculated according to the methods of small data sets. The nonlinear features of the two phase flow instability under rolling motion were analyzed with the results of geometric invariants coupling with the experimental data. The results indicated that rolling motion strengthened the nonlinear characteristics of two phase flow instability. Some typical nonlinear phenomena such as period-doubling bifurcations and chaotic oscillations were found in different cases.

This content is only available via PDF.
You do not currently have access to this content.