The narrow annular channel has been widely studied for its relatively larger heat transfer surface and structural compatibility. In this study, numerical studies have been performed on the 3D forced flow and heat transfer of water in concentric and eccentric annuli by using CFX codes. The gaps of concentric annuli range from 1.0mm to 4.0mm with the interval of 0.5mm. The eccentricity ratioes in eccentric annuli are 0.2, 0.3, 0.5 and 0.7. The radius ratioes of the eccentric annulus include 0.33, 0.5 and 0.66. The calculated results are compared with some experimental data and they agree well. The results show that the flow frictional resistance factor decreases with increasing the gap size. The impact of gap sizes on the flow frictional resistance factor decreases with increasing Reynolds number. The flow frictional resistance factor in the eccentric annuli is larger than that in concentric annuli. Furthermore, the effects of the eccentricity ratio and gap size on Nu number and the flow frictional resistance factor are also investigated.
Skip Nav Destination
18th International Conference on Nuclear Engineering
May 17–21, 2010
Xi’an, China
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
978-0-7918-4932-3
PROCEEDINGS PAPER
Numerical Study on Flow and Heat Transfer in Concentric and Eccentric Annuli
Xingbo Yang,
Xingbo Yang
Xi’an Jiaotong University, Xi’an, Shaanxi, China
Search for other works by this author on:
Guanghui Su,
Guanghui Su
Xi’an Jiaotong University, Xi’an, Shaanxi, China
Search for other works by this author on:
Wenxi Tian,
Wenxi Tian
Xi’an Jiaotong University, Xi’an, Shaanxi, China
Search for other works by this author on:
Jiayun Wang,
Jiayun Wang
Xi’an Jiaotong University, Xi’an, Shaanxi, China
Search for other works by this author on:
Suizheng Qiu
Suizheng Qiu
Xi’an Jiaotong University, Xi’an, Shaanxi, China
Search for other works by this author on:
Xingbo Yang
Xi’an Jiaotong University, Xi’an, Shaanxi, China
Guanghui Su
Xi’an Jiaotong University, Xi’an, Shaanxi, China
Wenxi Tian
Xi’an Jiaotong University, Xi’an, Shaanxi, China
Jiayun Wang
Xi’an Jiaotong University, Xi’an, Shaanxi, China
Suizheng Qiu
Xi’an Jiaotong University, Xi’an, Shaanxi, China
Paper No:
ICONE18-29341, pp. 369-375; 7 pages
Published Online:
April 8, 2011
Citation
Yang, X, Su, G, Tian, W, Wang, J, & Qiu, S. "Numerical Study on Flow and Heat Transfer in Concentric and Eccentric Annuli." Proceedings of the 18th International Conference on Nuclear Engineering. 18th International Conference on Nuclear Engineering: Volume 4, Parts A and B. Xi’an, China. May 17–21, 2010. pp. 369-375. ASME. https://doi.org/10.1115/ICONE18-29341
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
Quantitative Assessment of the Overall Heat Transfer Coefficient U
J. Heat Transfer (June,2013)
Fundamental Issues and Recent Advancements in Analysis of Aircraft Brake Natural Convective Cooling
J. Heat Transfer (November,1998)
An Experimental Study of Mixed Convection in Vertical, Open-Ended, Concentric and Eccentric Annular Channels
J. Heat Transfer (July,2013)
Related Chapters
Boundary Layer Analysis
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis
Introduction
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Numerical Simulation of Nucleate Spray Cooling: Effect of Droplet Impact on Bubble Growth and Heat Transfer in a Thin Liquid Film
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)