The OTSG (Once-Through Steam Generator) is usually used in the integral nuclear power equipment which requires smaller size and better effect of heat transfer. The OTSG with double-side heat transfer component is presented in this paper. The heat transfer component is composed of straight tube outside and helix tube inside. In the both sides of the helix tube, the flow is spirally, therefore, the heat transfer is enhanced. The smaller the pitch, the stronger the spirally flow, the effect of heat transfer is better, but the flow resistance is raised. Especially the increased flow resistance in the secondary side brings a great influence to the pump. The heat transfer region of the secondary fluid are divided into three regions: sub-cooled region, boiling region, and superheated region, the effects of heat transfer induced by the spirally flow vary in different regions. Thus, there is an optimization problem which is to find an optimization pitch of the inner helix tube with the best effect of heat transfer and the minimum flow resistance. Based on analyzing the effects of the pitch on heat transfer enhancement and flow resistance, the pitch is optimized by the constrained nonlinear optimization method.

This content is only available via PDF.
You do not currently have access to this content.