SuperCritical Water-cooled nuclear Reactors (SCWRs) utilize a light-water coolant pressurized to 25 MPa with a channel inlet temperature of 350°C and outlet temperature of 625°C. Previous studies have indicated that uranium dioxide (UO2) nuclear fuel may not be suitable for SCWR use, because the maximum fuel centerline temperature might exceed the industry accepted limit of 1850°C. This research paper explores the use of uranium nitride (UN) as an alternative fuel option to UO2 at SuperCritical Water (SCW) conditions. A generic 1200-MWel Pressure-Tube (PT) -type reactor cooled with SCW was used for this thermalhydraulics analysis. The selected fuel option must have a fuel centerline temperature not higher than the industry accepted limit of 1850°C. Furthermore, the sheath (clad) temperature must not exceed the design limit of 850°C. The sheath and bundle geometry were adopted from previous studies. A single fuel channel was modeled using the UN fuel and an Inconel-600 sheath for several Axial Heat Flux Profiles (AHFPs). Uniform, upstream-skewed cosine, cosine and downstream-skewed cosine AHFPs were used. For each AHFP bulk-fluid, sheath and fuel centerline temperatures, and Heat Transfer Coefficient (HTC) profiles were calculated along the heated length of the channel. The calculations show that the UN fuel maintains a centerline temperature well below the industry accepted limit due to its high thermal conductivity at high temperatures. Therefore, the UN nuclear fuel is a viable fuel option for PT-type SCWRs.

This content is only available via PDF.
You do not currently have access to this content.