In Advanced Boiling Water Reactor (ABWR) the recirculation flow is controlled by Reactor Internal Pumps (RIP). For the new construction ABWR plant, Hitachi-GE applied a Motor Fluid coupling Generator system as a power supply of RIPs (RIP-MFG system). In RIP-MFG system, one MFG supplies electric power to five RIPs and controls the speed of RIPs simultaneously. MFG is the highly reliable power supply system and can sustain power supply to RIPs against grid perturbation due to its large rotational inertia [1]. Application for RIP-MFG system to ABWR is world’s first case although both MFG in BWR and RIP in ABWR are proven technologies. Since the recirculation flow system is the key system determining plant operational performance, Hitachi-GE applied Simulation Assisted Engineering (SAE) for RIP-MFG system to get higher reliability for designing RIP-MFG system and keep a plant constructional schedule due to avoid “trial and error” in the start-up test. The design process was broken down into 3 design phases and 7 design steps as follows. Basic design phase consists of step 1 through step 3. Step 1, a simulation code (RIP-MFG code) which contains electronic and hydraulics models for RIP and MFG was developed. Step 2, basic simulation was performed with RIP-MFG code and general inputs. It was concluded that RIP-MFG system would be basically applicable to ABWR recirculation flow control. Step 3, the System Requirements Specification for RIP-MFG system and the component design specifications were documented based upon the simulation. Detail design phase consists of step 4 through step 6. Step 4, The RIP-MFG components were produced and the component level tests were performed. Step 5, RIP-MFG system integrated tests were performed. The objective of the integrated tests was to verify the system design and the RIP-MFG code. The RIP-MFG code outputs have good agreement with both steady state and transient test data. It has concluded that RIP-MFG code is verified. Step6, the RIP-MFG controller parameters are now being evaluated with the verified code. Final test phase consists of step 7. Step 7, the performances of ABWR with RIP-MFG system will be evaluated finally in the plant start-up test.

This content is only available via PDF.
You do not currently have access to this content.