Probabilistic Risk Assessment (PRA) has been an integral part of the Westinghouse AP1000, and the former AP600, development programs from its inception. The design of the AP1000 plant is based on engineering solutions to reduce or eliminate many of the dominant risk contributors found in the existing generation of Pressurized Water Reactors (PWRs). Additional risk reduction features were identified from insights gained from the AP1000 PRA as it evolved with the design of the plant. These engineered solutions include severe accident prevention features that resulted in a significant reduction in the predicted core damage frequency. Examples include the removal of dependencies on electric power (both offsite power and diesel generators) and cooling water (service water and component cooling water), removal of common cause dependencies by using diverse components on parallel trains and reducing dependence on operator actions for key accident scenarios. Engineered solutions to severe accident consequence mitigation were also used in the AP1000 design based on PRA insights. Examples include in-vessel retention of molten core debris to eliminate the potential for ex-vessel phenomena challenges to containment integrity and passive containment heat removal through the containment shell to eliminate the potential for containment failure due to steam overpressure. Additionally, because the accident prevention and mitigation features of the AP1000 are engineered solutions, the traditional uncertainties associated with the core damage and release frequency are directly addressed.

This content is only available via PDF.
You do not currently have access to this content.