Narrow channel heat transfer element has been extensive adopted in engineering applications, especially at electronics technology, this kind of elements often be used to construct compact heat exchanger. Pressure drop of flow boiling at vertical channel with gaps of 1.7, 2.2 and 3.6 mm was experimentally investigated in this paper. The variation of the two-phase frictional multiplier vs. heat flux at various operating conditions was gotten experimentally, possible mechanism of the two-phase frictional multiplier trends of narrow channel were analyzed. Experimental results revealed that the two-phase frictional multiplier increased at lower flow rate and heat flux, as well as higher vapor quality, and dropped at wider flow gap. The multiplier can not be estimated by commonly used method for ordinary gap, thus a modified model of pressure drop for narrow channel was proposed considering the size effects of channel. The error of the predicted two-phase frictional multiplier is within ±15.4% compared with experimental results.

This content is only available via PDF.
You do not currently have access to this content.