In MTR reactors the fuel elements are usually of flat plate-type and the cooling water flows through gaps of 2 to 4 mm. Therefore, correlations developed for parallel flat plates are usually used for their study. Nevertheless, in the hydrodynamic regime of transition, the flow is not stable and, under high heat fluxes, there are no reliable correlations that can be applied in this geometry. The aim of the present work is to determine experimentally the heat transfer coefficient for water in this geometry in the rank of 3000< Re <10000 and for relatively high heat fluxes (between 24 W/cm2 and 32 W/cm2). The experimental setup consists of a 200 liters water tank, pressurized to 1.7 atm, which discharges its content through the vertical test section. The flow is downwards and it is controlled by a valve located downstream. The flow rate is measured with a orifice plate connected to a DPcell and the pressure with a JUMO pressure digital sensor. The test section is a rectangular channel constructed with two 62 cm long, 6 cm wide and 6mm thickness aluminum plates, separated with Teflon strips which set the gap for the flow passage. Gaps or plate separations of 2.7 mm and 3.8 mm were studied. The aluminum plates were electrically heated from the rear using a Bruker BMN 70/700 direct current power supply. The tests were made at 18 kW and 24 kW. The wall temperatures were measured with K-type thermocouples placed in different axial positions. The temperature measurements, the DPcell signal and the pressure signal were acquired with a digital card connected to a PC. Two different inlet flow temperatures were considered 10°C and 38°C. With this arrangement, measurements of wall temperatures evolutions were obtained and the local coefficient of convection h(z) was calculated. Comparisons with turbulent correlations for flat plates indicate that the measured temperatures of wall are greater than expected. It was also observed that there are zones where subcooled boiling is reached. There are some particular aspects that could affect the reliability of correlations for flows between flat plates. The first phenomenon is the change of viscosity close to the wall due to the very high heat fluxes. There may also appear buoyancy effects, though we believe they have a minor importance. And finally the long thermal and hydrodynamic development distances, which may delay the appearance of turbulence in the channel.
Skip Nav Destination
16th International Conference on Nuclear Engineering
May 11–15, 2008
Orlando, Florida, USA
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
0-7918-4816-7
PROCEEDINGS PAPER
Experimental Investigation on the Heat Transfer Characteristics of a Minichannel in Transition Flow
Viviana Masson,
Viviana Masson
Comisio´n Nacional de Investigaciones Cienti´ficas y Te´chicas; Instituto Balseiro, Bariloche, Argentina
Search for other works by this author on:
Nicola´s Silin,
Nicola´s Silin
Comisio´n Nacional de Investigaciones Cienti´ficas y Te´chicas; Instituto Balseiro, Bariloche, Argentina
Search for other works by this author on:
Alejandra Azcona,
Alejandra Azcona
Comisio´n Nacional de Energi´a Ato´mica; Instituto Balseiro, Bariloche, Argentina
Search for other works by this author on:
Dari´o Delmastro,
Dari´o Delmastro
Comisio´n Nacional de Energi´a Ato´mica; Instituto Balseiro, Bariloche, Argentina
Search for other works by this author on:
Juan Carlos Garci´a,
Juan Carlos Garci´a
Comisio´n Nacional de Energi´a Ato´mica; Instituto Balseiro, Bariloche, Argentina
Search for other works by this author on:
Daniel Mateos
Daniel Mateos
Comisio´n Nacional de Energi´a Ato´mica, Bariloche, Argentina
Search for other works by this author on:
Viviana Masson
Comisio´n Nacional de Investigaciones Cienti´ficas y Te´chicas; Instituto Balseiro, Bariloche, Argentina
Nicola´s Silin
Comisio´n Nacional de Investigaciones Cienti´ficas y Te´chicas; Instituto Balseiro, Bariloche, Argentina
Alejandra Azcona
Comisio´n Nacional de Energi´a Ato´mica; Instituto Balseiro, Bariloche, Argentina
Dari´o Delmastro
Comisio´n Nacional de Energi´a Ato´mica; Instituto Balseiro, Bariloche, Argentina
Juan Carlos Garci´a
Comisio´n Nacional de Energi´a Ato´mica; Instituto Balseiro, Bariloche, Argentina
Daniel Mateos
Comisio´n Nacional de Energi´a Ato´mica, Bariloche, Argentina
Paper No:
ICONE16-48451, pp. 443-448; 6 pages
Published Online:
June 24, 2009
Citation
Masson, V, Silin, N, Azcona, A, Delmastro, D, Garci´a, JC, & Mateos, D. "Experimental Investigation on the Heat Transfer Characteristics of a Minichannel in Transition Flow." Proceedings of the 16th International Conference on Nuclear Engineering. Volume 3: Thermal Hydraulics; Instrumentation and Controls. Orlando, Florida, USA. May 11–15, 2008. pp. 443-448. ASME. https://doi.org/10.1115/ICONE16-48451
Download citation file:
12
Views
Related Proceedings Papers
Related Articles
Heat Transfer to Suspensions of Microencapsulated Phase Change Material Flowing Through Minichannels
J. Heat Transfer (February,2012)
Variations of Buoyancy-Induced Mass Flux From Single-Phase to Two-Phase Flow in a Vertical Porous Tube With Constant Heat Flux
J. Heat Transfer (August,1999)
Subcooled Boiling Heat Transfer for Turbulent Flow of Water in a Short Vertical Tube
J. Heat Transfer (January,2010)
Related Chapters
Comparison of the Availability of Trip Systems for Reactors with Exothermal Reactions (PSAM-0361)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential