Hydrodynamic flow instability in Once Through Steam Generators (OTSG) is one of the important problems in the design and operation of Liquid Metal Fast Breeder Reactors (LMFBRs). Under certain operating conditions, water flow in OTSG is susceptible to instability due to the close coupling between the thermal and hydraulic processes. Sustained flow oscillations due to instability are undesirable since they result in flow mal-distribution among the tubes resulting in thermal stress, mechanical vibrations and system control problems. It is therefore, necessary to assess the operating conditions, under which instability occurs so that the system may be designed to operate always under stable conditions. The cause of the main type of instability, important for the design of SGs is the propagation of density waves. This type of low frequency instability is referred to in literature as parallel-channel, density wave, time delay or mass flow-void feedback instability. Dynamic instability (density wave oscillation DWO) occurs because of the phase mismatch between the primary perturbation (water flow) and the response to this perturbation (pressure drop). As many tubes are operating under essentially constant pressure heads, this mismatch can lead to sustained/diverging oscillations. Water flow oscillation in tubes manifests as oscillations in the steam temperature at the tube outlet/pressure fluctuations. However it is difficult to instrument individual tubes in SG for such measurement in an operating plant. If the flow oscillation in the tube manifests itself in the overall module flow, then fluctuation in the overall flow/flow noise could be utilized for on-line stability measurements. Towards this, experiments were conducted in the sodium heated once through steam generator in an OTSG model. To confirm the extent of oscillation in the steam temperature and in inlet water flow, 3 tubes out of 19, were monitored besides overall module flow. Main objective of the present study was to assess the occurrence of dynamic instability in SG through module inlet flow perturbations, measured by ΔP measurements across the orifice at entry to the tubes and steam temperature fluctuation measurement at the outlet of tube by bare thermocouples. This paper discusses the experiments carried out in the Steam Generator model of Prototype Fast Breeder Reactor to investigate the instability phenomenon, the instrumentation details, the results and its discussion.
Skip Nav Destination
16th International Conference on Nuclear Engineering
May 11–15, 2008
Orlando, Florida, USA
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
0-7918-4816-7
PROCEEDINGS PAPER
Assessment of Dynamic Instability in Once Through Steam Generator Available to Purchase
V. Prakash,
V. Prakash
Indira Gandhi Centre for Atomic Research, Kalpakkam, India
Search for other works by this author on:
M. Thirumalai,
M. Thirumalai
Indira Gandhi Centre for Atomic Research, Kalpakkam, India
Search for other works by this author on:
P. Murugesan,
P. Murugesan
Indira Gandhi Centre for Atomic Research, Kalpakkam, India
Search for other works by this author on:
V. Vinod,
V. Vinod
Indira Gandhi Centre for Atomic Research, Kalpakkam, India
Search for other works by this author on:
V. A. Sureshkumar,
V. A. Sureshkumar
Indira Gandhi Centre for Atomic Research, Kalpakkam, India
Search for other works by this author on:
I. B. Noushad,
I. B. Noushad
Indira Gandhi Centre for Atomic Research, Kalpakkam, India
Search for other works by this author on:
K. K. Rajan,
K. K. Rajan
Indira Gandhi Centre for Atomic Research, Kalpakkam, India
Search for other works by this author on:
P. Kalyanasundaram,
P. Kalyanasundaram
Indira Gandhi Centre for Atomic Research, Kalpakkam, India
Search for other works by this author on:
G. Vaidyanathan
G. Vaidyanathan
Indira Gandhi Centre for Atomic Research, Kalpakkam, India
Search for other works by this author on:
V. Prakash
Indira Gandhi Centre for Atomic Research, Kalpakkam, India
M. Thirumalai
Indira Gandhi Centre for Atomic Research, Kalpakkam, India
P. Murugesan
Indira Gandhi Centre for Atomic Research, Kalpakkam, India
V. Vinod
Indira Gandhi Centre for Atomic Research, Kalpakkam, India
V. A. Sureshkumar
Indira Gandhi Centre for Atomic Research, Kalpakkam, India
I. B. Noushad
Indira Gandhi Centre for Atomic Research, Kalpakkam, India
K. K. Rajan
Indira Gandhi Centre for Atomic Research, Kalpakkam, India
P. Kalyanasundaram
Indira Gandhi Centre for Atomic Research, Kalpakkam, India
G. Vaidyanathan
Indira Gandhi Centre for Atomic Research, Kalpakkam, India
Paper No:
ICONE16-48253, pp. 315-321; 7 pages
Published Online:
June 24, 2009
Citation
Prakash, V, Thirumalai, M, Murugesan, P, Vinod, V, Sureshkumar, VA, Noushad, IB, Rajan, KK, Kalyanasundaram, P, & Vaidyanathan, G. "Assessment of Dynamic Instability in Once Through Steam Generator." Proceedings of the 16th International Conference on Nuclear Engineering. Volume 3: Thermal Hydraulics; Instrumentation and Controls. Orlando, Florida, USA. May 11–15, 2008. pp. 315-321. ASME. https://doi.org/10.1115/ICONE16-48253
Download citation file:
22
Views
Related Proceedings Papers
Related Articles
Elimination of Thermoacoustic Furnace Vibration in a Gas-Fired Package Boiler: A Case Study
J. Pressure Vessel Technol (June,2009)
Flow Stability of Heat Recovery Steam Generators
J. Eng. Gas Turbines Power (October,2006)
Prediction of Thermoacoustic Vibration of Burner/Furnace Systems in Utility Boilers
J. Pressure Vessel Technol (February,2008)
Related Chapters
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 1, Third Edition
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler & Pressure Vessel Code, Volume 1, Second Edition
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies