Nuclear energy must be made available, freely and readily, to help meet world energy needs. The perspective offered here is a model for others to consider, adopting and adapting using whatever elements fit their own strategies and needs. The underlying philosophy is to retain flexibility in the reactor development, deployment and fuel cycle, while ensuring the principle that customer, energy market, safety, non-proliferation and sustainability needs are all addressed. Canada is the world’s largest exporter of uranium, providing about one-third of the world supply for nuclear power reactors. Canada’s Atomic Energy of Canada Limited (AECL) has developed a unique world-class nuclear power reactor technology — the CANDU® reactor based on the Pressure Tube Reactor (PTR) concept, moderated by heavy water (D2O), also sometimes called the Pressurized Heavy Water reactor or PHWR. With expectations of significant expansion in nuclear power programs worldwide and the resultant concerns about uranium availability and price, there is a growing desire to improve resource utilization by extracting more energy from each tonne of mined fissionable material. Attention is therefore being increasingly focused on fuel cycles that are more energy efficient, reduce waste streams and ensure sustainable futures. There are also many compelling reasons to utilize advanced fuel cycles in PTR (CANDU-type) thermal spectrum reactors. Because of its inherent technical characteristics, PTRs have a great deal of fuel cycle flexibility. The combination of relatively high neutron efficiency (provided by heavy water moderation and careful selection of core materials), on-line fuelling capability and simple fuel bundle design mean that PTR reactors can use not only natural and enriched uranium, but also a wide variety of other fuels including thorium-based fuels and those resulting from the recycle of irradiated fuel. In addition, the PTR can be optimized as a very effective “intermediate burner” to provide efficient fuel cycles that remove residual minor actinides. This inherent fuel cycle flexibility offers many technical, resource and sustainability, and economic advantages over other reactor technologies and is the subject of this paper. The design evolution and intent is to be consistent with improved or enhanced safety, licensing and operating limits and global proliferation concerns, and sustainable energy futures.

This content is only available via PDF.
You do not currently have access to this content.