It has been proposed to introduce a steam injector into boiling water reactors as a feed water heat exchanger and a safety injection pump. In the present paper, the heat transfer characteristics in the steam injector were examined. The nozzle size of the water jet in the steam injector that was used in the present experiments was 5 mm. The length of the mixing section of the water jet and the steam flow in the injector was 53 mm. Subcooled water was supplied to the water nozzle. Saturated steam at approximately 0.1 MPa was also supplied to the mixing section of the steam injector. Water jet velocities tested in the present experiments were in the range of 9.7 ∼ 21 m/s. The velocities corresponded to the Reynolds number of 5.9×104 ∼ 1.5×105. Radial and axial temperature distributions of the water jet in the steam injector were measured. Velocity distributions of the water jet were also measured. From the measured temperature and the velocity distributions, heat exchange rates from the steam flow around the water jet to the water jet were derived. The obtained results indicated that the heat exchange rates were greatly larger than those of usual turbulent flow in a pipe. A flow state of the water jet was also visually examined. The results of the visual observation revealed that the interface between the water jet and the steam flow was very wavy. It was supposed that the wavy motion on the water jet surface created the effective-large-internal circulation flow in the water jet, which resulted in the tremendously effective heat transport into the center portion of the water jet. From the pictures of the water jet surface recorded by a high speed video camera, characteristics of waves on the surface; the wave height, the wave velocity, the wave length and the wave frequency, were obtained. The heat transfer of the water jet in the steam injector was correlated with the wave characteristic properties. The heat transfer of the water jet was also analyzed by using the commercial CFD code of STAR-CD. When the wavy interface was introduced into the STAR-CD code analysis, the radial heat transport was drastically improved. This analytical result also supported that the tremendously more effective radial heat transport than that of the usual turbulent flow was caused by the wavy motion of the water jet surface.
Skip Nav Destination
16th International Conference on Nuclear Engineering
May 11–15, 2008
Orlando, Florida, USA
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
0-7918-4815-9
PROCEEDINGS PAPER
Study on Mechanism of Condensation Heat Transfer of Water Jet in Steam Injector
Takahiro Shimizu,
Takahiro Shimizu
Kogakuin University, Hachioji, Tokyo, Japan
Search for other works by this author on:
Yuhki Takahashi,
Yuhki Takahashi
Kogakuin University, Hachioji, Tokyo, Japan
Search for other works by this author on:
Yasuo Koizumi,
Yasuo Koizumi
Kogakuin University, Hachioji, Tokyo, Japan
Search for other works by this author on:
Hiroyasu Ohtake,
Hiroyasu Ohtake
Kogakuin University, Hachioji, Tokyo, Japan
Search for other works by this author on:
Toru Miyashita,
Toru Miyashita
Kogakuin University, Hachioji, Tokyo, Japan
Search for other works by this author on:
Michitsugu Mori
Michitsugu Mori
Tokyo Electric Power Company, Yokohama, Japan
Search for other works by this author on:
Takahiro Shimizu
Kogakuin University, Hachioji, Tokyo, Japan
Yuhki Takahashi
Kogakuin University, Hachioji, Tokyo, Japan
Yasuo Koizumi
Kogakuin University, Hachioji, Tokyo, Japan
Hiroyasu Ohtake
Kogakuin University, Hachioji, Tokyo, Japan
Toru Miyashita
Kogakuin University, Hachioji, Tokyo, Japan
Michitsugu Mori
Tokyo Electric Power Company, Yokohama, Japan
Paper No:
ICONE16-48174, pp. 629-634; 6 pages
Published Online:
June 24, 2009
Citation
Shimizu, T, Takahashi, Y, Koizumi, Y, Ohtake, H, Miyashita, T, & Mori, M. "Study on Mechanism of Condensation Heat Transfer of Water Jet in Steam Injector." Proceedings of the 16th International Conference on Nuclear Engineering. Volume 2: Fuel Cycle and High Level Waste Management; Computational Fluid Dynamics, Neutronics Methods and Coupled Codes; Student Paper Competition. Orlando, Florida, USA. May 11–15, 2008. pp. 629-634. ASME. https://doi.org/10.1115/ICONE16-48174
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
Liquid-Vapor Interactions in a Constant-Area Condensing Ejector
J. Basic Eng (March,1972)
Heat Transfer in Direct Contact Condensation of Steam to Subcooled Water Spray
J. Heat Transfer (August,2001)
Steam Jet Condensation in a Pool: From Fundamental Understanding to Engineering Scale Analysis
J. Heat Transfer (March,2012)
Related Chapters
Jet Ejectors
Pumps and Compressors
Initial Findings of an Investigation on the Removal of the Cavitation Erosion Risk in a Prototype Control Orifice Inside a Diesel Injector
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
In-Nozzle Cavitation-Induced Orifice-to-Orifice Variations Using Real Injector Geometry and Gasoline-Like Fuels
Proceedings of the 10th International Symposium on Cavitation (CAV2018)