The computational fluid dynamics code FLUENT has been used to analyze turbulent fluid flow over pebbles in a pebble bed modular reactor. The objective of the analysis is to evaluate the capability of the various RANS turbulence models to predict mean velocities, turbulent kinetic energy, and turbulence intensity inside the bed. The code was run using three RANS turbulence models: standard k-ε, standard k-ω and the Reynolds stress turbulence models at turbulent Reynolds numbers, corresponding to normal operation of the reactor. For the k-ε turbulence model, the analyses were performed at a range of Reynolds numbers between 1300 and 22 000 based on the approach velocity and the sphere diameter of 6 cm. Predictions of the mean velocities, turbulent kinetic energy, and turbulence intensity for the three models are compared at the Reynolds number of 5500 for all the RANS models analyzed. A unit-cell approach is used and the fluid flow domain consists of three unit cells. The packing of the pebbles is an orthorhombic arrangement consisting of seven layers of pebbles with the mean flow parallel to the z-axis. For each Reynolds number analyzed, the velocity is observed to accelerate to twice the inlet velocity within the pebble bed. From the velocity contours, it can be seen that the flow appears to have reached an asymptotic behavior by the end of the first unit cell. The velocity vectors for the standard k-ε and the Reynolds stress model show similar patterns for the Reynolds number analyzed. For the standard k-ω, the vectors are different from the other two. Secondary flow structures are observed for the standard k-ω after the flow passes through the gap between spheres. This feature is not observable in the case of both the standard k-ε and the RSM. Analysis of the turbulent kinetic energy contours shows that there is higher turbulence kinetic energy near the inlet than inside the bed. As the Reynolds number increases, kinetic energy inside the bed increases. The turbulent kinetic energy values obtained for the standard k-ε and the RSM are similar, showing maximum turbulence kinetic energy of 7.5 m2·s−2, whereas the standard k-ω shows a maximum of about 20 m2·s−2. Another observation is that the turbulence intensity is spread throughout the flow domain for the k-ε and RSM whereas for the k-ω, the intensity is concentrated at the front of the second sphere. Preliminary analysis performed for the pressure drop using the standard k-ε model for various velocities show that the dependence of pressure on velocity varies as V1.76.
Skip Nav Destination
16th International Conference on Nuclear Engineering
May 11–15, 2008
Orlando, Florida, USA
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
0-7918-4815-9
PROCEEDINGS PAPER
Fluid Flow Analysis in a Pebble Bed Modular Reactor Using RANS Turbulence Models Available to Purchase
Margaret Mkhosi,
Margaret Mkhosi
Purdue University, West Lafayette, IN
Search for other works by this author on:
Richard Denning,
Richard Denning
Ohio State University, Columbus, OH
Search for other works by this author on:
Audeen Fentiman
Audeen Fentiman
Purdue University, West Lafayette, IN
Search for other works by this author on:
Margaret Mkhosi
Purdue University, West Lafayette, IN
Richard Denning
Ohio State University, Columbus, OH
Audeen Fentiman
Purdue University, West Lafayette, IN
Paper No:
ICONE16-48947, pp. 597-606; 10 pages
Published Online:
June 24, 2009
Citation
Mkhosi, M, Denning, R, & Fentiman, A. "Fluid Flow Analysis in a Pebble Bed Modular Reactor Using RANS Turbulence Models." Proceedings of the 16th International Conference on Nuclear Engineering. Volume 2: Fuel Cycle and High Level Waste Management; Computational Fluid Dynamics, Neutronics Methods and Coupled Codes; Student Paper Competition. Orlando, Florida, USA. May 11–15, 2008. pp. 597-606. ASME. https://doi.org/10.1115/ICONE16-48947
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
Investigation of the Pressure Drop Across Packed Beds of Spherical Beads: Comparison of Empirical Models With Pore-Level Computational Fluid Dynamics Simulations
J. Fluids Eng (July,2019)
Modeling of Cube Array Roughness: RANS, Large Eddy Simulation, and Direct Numerical Simulation
J. Fluids Eng (June,2022)
Related Chapters
Natural Gas Transmission
Pipeline Design & Construction: A Practical Approach, Third Edition
Optimization of an Irregular 2D Packing Problem by a Genetic-Based Heuristic Algorithm
International Conference on Computer and Automation Engineering, 4th (ICCAE 2012)
The Thermo —Mechanical Analysis of Mechanical Packing (SEAL), Using Finite Element Method (FEM) — Results and Conclusions
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)