In Japan Atomic Energy Agency (JAEA), simulation code “MUGTHES (MUlti Geometry simulation code for THErmal-hydraulic and Structure heat conduction analysis in boundary fitted coordinate)” has been developed to evaluate thermal striping phenomena that are caused by turbulence mixing of fluids in different temperature. MUGTHES employs Boundary Fitted Coordinate (BFC) system to treat complex geometries in power plants. And MUGTHES can deal with three-dimensional transient thermal-hydraulic problem coupled with three-dimensional transient heat conduction in the surrounding structure in consideration of conjugated heat transfer. In this paper, numerical schemes for thermal-hydraulic simulation employed in MUGTHES are described including LES model. A simple method to limit numerical oscillation is adopted in energy equation solving process. A new iterative method to solve Poisson equation in BFC system is developed for effective transient calculations. This method is based on BiCGSTAB method and SOR technique. As the code validation of MUGTHES, a numerical simulation in a T-junction piping system with LES approach was conducted. Numerical results related to velocity and fluid temperature distributions were compared with an existing water experimental data and the applicability of numerical schemes with LES model in MUGTHES to the thermal striping phenomenon was confirmed.

This content is only available via PDF.
You do not currently have access to this content.