In nuclear reactor design, significant acoustic pressure loads impact the steam dryer hood as a result of the main steam line break outside containment (MSLB) event. When a main steam line breaks, it is assumed that the pipe instantaneously breaks completely open to the ambient environment (double-ended guillotine break). Due to the huge pressure difference between the inside of the reactor pressure vessel (RPV) and surrounding ambient environment, a shock wave will form at the break point and burst into the surrounding environment. At the same time, an expansion wave will travel upstream through the main steam line to the RPV, which results in a pressure reduction on the outside of the steam dryer hood. This expansion wave will create a substantial pressure difference between the two sides of the steam dryer hood with a resultant high stress on the hood. This differential pressure load is the acoustic load used in the structure design evaluations for this event. A key design basis requirement for the steam dryer is to maintain structural integrity during transient, and accident conditions. Demonstration that the steam dryers meet this design basis requires a calculation of the magnitude of the acoustic load on the steam dryer during a MSLB. In this study, Computational Fluid Dynamics (CFD) is used as an alternate calculation method to investigate the phenomenon of MSLB. Transient simulations with fine time steps were carried out. The results show that CFD is a useful tool to provide additional information on the acoustic load as compared to the traditional methods. From the CFD results, the minimum pressure value and its distribution area at different flow times was identified. Through the modeling, an understanding of the detailed transient flow field, particular the acoustic pressure field near the dryer hood during the MSLB was achieved.

This content is only available via PDF.
You do not currently have access to this content.