Exergy concept combined with pinch based approach is used for studying the optimal integration of energy conversion systems. The analysis first considers the representation of the hot and cold composite curves of the process and defines the energy and the exergy requirements. Strength of pinch analysis is that system information can be represented using simple diagrams and thus targets for the system under consideration can be readily obtained prior to design. In contrast, the power of exergy analysis is that it can identify the major causes of thermodynamic imperfection of thermal and chemical processes and thus promising modifications can be determined effectively. By combining the strengths of both methods, the proposed method can represent a whole system, including individual units on one diagram, which helps to screen the promising modifications quickly for improving a base case design. This method is Energy Level Analysis. We have developed energy level analysis to energy destruction level as a strategy for energy integration that uses power plant simulation tools to define the interaction between the various subsystems in the plant and a graphical technique to help the engineer interpret the results of the simulation with physical insights that point towards exploring possible integration schemes to increase energy efficiency. In this paper, 1000 MW nuclear steam power plant similar to Bushehr is considered. Simulation of power plant is performed in STEAM PRO software. Computer code is developed to exergy calculation and generation of exergy destruction level representation. In addition, thermoeconomic analysis is performed to generation of other new graphical representation related to exergy destruction that helps us to consider cost rate of destruction in each component.

This content is only available via PDF.
You do not currently have access to this content.