Reactor safety and risk are dominated by the potential and major contribution for human error in the design, operation, control, management, regulation and maintenance of the plant, and hence to all accidents. Given the possibility of accidents and errors, now we need to determine the outcome (error) probability, or the chance of failure. Conventionally, reliability engineering is associated with the failure rate of components, or systems, or mechanisms, not of human beings in and interacting with a technological system. The probability of failure requires a prior knowledge of the total number of outcomes, which for any predictive purposes we do not know or have. Analysis of failure rates due to human error and the rate of learning allow a new determination of the dynamic human error rate in technological systems, consistent with and derived from the available world data. The basis for the analysis is the “learning hypothesis” that humans learn from experience, and consequently the accumulated experience defines the failure rate. A new “best” equation has been derived for the human error, outcome or failure rate, which allows for calculation and prediction of the probability of human error. We also provide comparisons to the empirical Weibull parameter fitting used in and by conventional reliability engineering and probabilistic safety analysis methods. These new analyses show that arbitrary Weibull fitting parameters and typical empirical hazard function techniques cannot be used to predict the dynamics of human errors and outcomes in the presence of learning. Comparisons of these new insights show agreement with human error data from the world’s commercial airlines, the two shuttle failures, and from nuclear plant operator actions and transient control behavior observed in transients in both plants and simulators. The results demonstrate that the human error probability (HEP) is dynamic, and that it may be predicted using the learning hypothesis and the minimum failure rate, and can be utilized for probabilistic risk analysis purposes.
Skip Nav Destination
14th International Conference on Nuclear Engineering
July 17–20, 2006
Miami, Florida, USA
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
0-7918-4246-0
PROCEEDINGS PAPER
The Human Bathtub: Safety and Risk Predictions Including the Dynamic Probability of Operator Errors Available to Purchase
Romney B. Duffey,
Romney B. Duffey
Atomic Energy of Canada, Ltd., Chalk River, ON, Canada
Search for other works by this author on:
John W. Saull
John W. Saull
International Federation of Airworthiness, East Grinstead, W. Sussex, UK
Search for other works by this author on:
Romney B. Duffey
Atomic Energy of Canada, Ltd., Chalk River, ON, Canada
John W. Saull
International Federation of Airworthiness, East Grinstead, W. Sussex, UK
Paper No:
ICONE14-89476, pp. 243-248; 6 pages
Published Online:
September 17, 2008
Citation
Duffey, RB, & Saull, JW. "The Human Bathtub: Safety and Risk Predictions Including the Dynamic Probability of Operator Errors." Proceedings of the 14th International Conference on Nuclear Engineering. Volume 5: Safety and Security; Low Level Waste Management, Decontamination and Decommissioning; Nuclear Industry Forum. Miami, Florida, USA. July 17–20, 2006. pp. 243-248. ASME. https://doi.org/10.1115/ICONE14-89476
Download citation file:
10
Views
Related Proceedings Papers
Related Articles
Risk Assessment Methodology for Electric-Current Induced Drowning Accidents
ASME J. Risk Uncertainty Part B (September,2016)
Dr. Romney B. Duffey on His 80th Birthday
ASME J of Nuclear Rad Sci (July,2022)
Historical Development of a Standard to Reduce Risk From Pressure Systems Failure–Part I: The ASME HPS Section 6000
J. Pressure Vessel Technol (February,2006)
Related Chapters
A PSA Update to Reflect Procedural Changes (PSAM-0217)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
QRAS Approach to Phased Mission Analysis (PSAM-0444)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Application of Probabilistic Methods for the Evaluation of Deterministic Deviations from Technical Specifications (PSAM-0277)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)