A series of experimental studies of frictional pressure drop for single phase and two-phase bubble flow in smooth rolling tubes were carried out. The tube inside diameters were 15mm, 25mm and 34.5mm respectively, the rolling angles of tubes could be set as 10° and 20°, and the rolling periods could be set as 5s, 10s and 15s. Combining with the analysis of single-phase water motion, it was found that the traditional correlations for calculating single-phase frictional coefficient were not suitable for the rolling condition. Based on the experimental data, a new correlation for calculating single-phase frictional coefficient under rolling condition was presented, and the calculations not only agreed well with the experimental data, but also could display the periodically dynamic characteristics of frictional coefficients. Applying the new correlation to homogeneous flow model, two-phase frictional pressure drop of bubble flow in rolling tubes could be calculated, the results showed that the relative error between calculation and experimental data was less than ± 25%.

This content is only available via PDF.
You do not currently have access to this content.