Coolant mixing phenomena occurring in the pressure vessel of a nuclear reactor constitute one of the main objectives of investigation by researchers concerned with nuclear reactor safety. For instance, mixing plays a relevant role in reactivity-induced accidents initiated by deboration or boron dilution events, followed by transport of a deborated slug into the vessel of a pressurized water reactor. Another example is constituted by temperature mixing, which may sensitively affect the consequences of a pressurized thermal shock scenario. Predictive analysis of mixing phenomena is strongly improved by the availability of computational tools able to cope with the inherent three-dimensionality of such problem, like system codes with three-dimensional capabilities, and Computational Fluid Dynamics (CFD) codes. The present paper deals with numerical analyses of coolant mixing in the reactor pressure vessel of a VVER-1000 reactor, performed by the ANSYS CFX-10 CFD code. In particular, the “swirl” effect that has been observed to take place in the downcomer of such kind of reactor has been addressed, with the aim of assessing the capability of the codes to predict that effect, and to understand the reasons for its occurrence. Results have been compared against experimental data from V1000CT-2 Benchmark. Moreover, a boron mixing problem has been investigated, in the hypothesis that a deborated slug, transported by natural circulation, enters the vessel. Sensitivity analyses have been conducted on some geometrical features, model parameters and boundary conditions.
Skip Nav Destination
14th International Conference on Nuclear Engineering
July 17–20, 2006
Miami, Florida, USA
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
0-7918-4245-2
PROCEEDINGS PAPER
Application of CFX-10 to the Investigation of RPV Coolant Mixing in VVER Reactors
Fabio Moretti,
Fabio Moretti
University of Pisa, Pisa, Italy
Search for other works by this author on:
Daniele Melideo,
Daniele Melideo
University of Pisa, Pisa, Italy
Search for other works by this author on:
Fulvio Terzuoli,
Fulvio Terzuoli
University of Pisa, Pisa, Italy
Search for other works by this author on:
Francesco D’Auria
Francesco D’Auria
University of Pisa, Pisa, Italy
Search for other works by this author on:
Fabio Moretti
University of Pisa, Pisa, Italy
Daniele Melideo
University of Pisa, Pisa, Italy
Fulvio Terzuoli
University of Pisa, Pisa, Italy
Francesco D’Auria
University of Pisa, Pisa, Italy
Paper No:
ICONE14-89840, pp. 417-427; 11 pages
Published Online:
September 17, 2008
Citation
Moretti, F, Melideo, D, Terzuoli, F, & D’Auria, F. "Application of CFX-10 to the Investigation of RPV Coolant Mixing in VVER Reactors." Proceedings of the 14th International Conference on Nuclear Engineering. Volume 4: Computational Fluid Dynamics, Neutronics Methods and Coupled Codes; Student Paper Competition. Miami, Florida, USA. July 17–20, 2006. pp. 417-427. ASME. https://doi.org/10.1115/ICONE14-89840
Download citation file:
5
Views
Related Proceedings Papers
Related Articles
CFD Tool for Assessment of the Reactor Pressure Vessel Integrity in Pressure Thermal Shock Conditions: Influence of Turbulence Model and Mesh Refinement on the Vessel Thermal Loading During PTS Transient
J. Pressure Vessel Technol (June,2011)
Safety Assessment of Reactor Pressure Vessel Integrity for Loss of Coolant Accident Conditions
J. Pressure Vessel Technol (February,2012)
CFD-Tools Qualification for Thermal-Hydraulics Pressurized Thermal Shock Analysis
J. Pressure Vessel Technol (November,2003)
Related Chapters
Nuclear Reactor Safety Systems
Nuclear Reactor Thermal-Hydraulics: Past, Present and Future
Development of Nuclear Boiler and Pressure Vessels in Taiwan
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 3, Third Edition
Insights and Results of the Shutdown PSA for a German SWR 69 Type Reactor (PSAM-0028)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)