Turbulent statistics near a structural surface, such as a magnitude of temperature fluctuation and its frequency characteristic, play an important role in damage progression due to thermal stress. A Large Eddy Simulation (LES) has an advantage to obtain the turbulent statistics especially in terms of the frequency characteristic. However, it still needs a great number of computational cells near a wall. In the present paper, a two-layer approach based on boundary layer approximation is extended to an energy equation so that a low computational cost is achieved even in a large-scale LES analysis to obtain the near wall turbulent statistics. The numerical examinations are carried out based on a plane channel flow with constant heat generation. The friction Reynolds numbers (Reτ) of 395 and 10,000 are investigated, while the Prandtl number (Pr) is set to 0.71 in each analysis. It is demonstrated that the present method is cost-effective for a large-scale LES analysis.

This content is only available via PDF.
You do not currently have access to this content.