This paper describes a model for the cladding-coolant heat transfer of high burnup fuel during a Reactivity Initiated Accident (RIA) which is implemented in the fuel performance code FRAPTRAN 1.2. The minimum stable film boiling temperature, affected by the subcooling and the clad oxidation, is modeled by a modified Henry correlation. This accounts for the effects of thermal properties of the cladding surface on the transient temperature drop during liquid-solid contact. The transition boiling regime is described as the interpolation of the heat flux between two anchor points on the boiling curve: the Critical Heat Flux (CHF) and minimum stable film boiling. The CHF correlation is based on the Zuber hydrodynamic model multiplied by a subcooling factor. Frederking correlation is chosen to model the film boiling regime. The heat conduction through the oxide layer of the cladding surface of high burnup fuel is calculated by solving heat conduction equations with thermal properties of zirconia taken from MATPRO. This model is validated in the FRAPTRAN code for test cases of both high burnup and fresh test fuel rods including the burnup level (0–56 MW d/kg), peak fuel enthalpy deposit (70–190 cal/g), degree of subcooling (0–80 °C), and extent of oxidation (0–25 micron). The modified code demonstrates the capability of differentiating between the departure from nucleate boiling (DNB) and none-DNB cases. The predicted peak cladding temperature (PCT) and duration of DNB achieves generally good agreement with the experimental data. It is found that the cladding surface oxidation of high burnup fuel causes an early rewetting of cladding or suppresses DNB due to two factors: 1) Thick zirconia layer may delay the heat conducted to the surface while keeping the surface heat transfer in the most effective nucleate boiling regime. 2) The transient liquid-solid contact resulting from vapor breaking down would cause a lower interface temperature for an oxidized surface, essentially raises the minimum stable film boiling temperature.
Skip Nav Destination
14th International Conference on Nuclear Engineering
July 17–20, 2006
Miami, Florida, USA
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
0-7918-4243-6
PROCEEDINGS PAPER
Modeling Cladding-Coolant Heat Transfer of High-Burnup Fuel During RIA
Wenfeng Liu,
Wenfeng Liu
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
Mujid S. Kazimi
Mujid S. Kazimi
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
Wenfeng Liu
Massachusetts Institute of Technology, Cambridge, MA
Mujid S. Kazimi
Massachusetts Institute of Technology, Cambridge, MA
Paper No:
ICONE14-89829, pp. 855-864; 10 pages
Published Online:
September 17, 2008
Citation
Liu, W, & Kazimi, MS. "Modeling Cladding-Coolant Heat Transfer of High-Burnup Fuel During RIA." Proceedings of the 14th International Conference on Nuclear Engineering. Volume 2: Thermal Hydraulics. Miami, Florida, USA. July 17–20, 2006. pp. 855-864. ASME. https://doi.org/10.1115/ICONE14-89829
Download citation file:
16
Views
Related Proceedings Papers
Related Articles
COBRA-TF Simulation of DNB Response During Reactivity-Initiated Accidents Using the NSRR Pulse Irradiation Experiments
ASME J of Nuclear Rad Sci (July,2016)
Subcooled Pool Boiling Experiments on Horizontal Heaters Coated With Carbon Nanotubes
J. Heat Transfer (July,2009)
An Investigation of the Collapse and Surface Rewet in Film Boiling in Forced Vertical Flow
J. Heat Transfer (May,1975)
Related Chapters
Effect of Chromium Content on the On-Cooling Phase Transformations and Induced Prior-β Zr Mechanical Hardening and Failure Mode (in Relation to Enhanced Accident-Tolerant Fuel Chromium-Coated Zirconium-Based Cladding Behavior upon and after High-Temperature Transients)
Zirconium in the Nuclear Industry: 20th International Symposium
E110opt Fuel Cladding Corrosion under PWR Conditions
Zirconium in the Nuclear Industry: 20th International Symposium
Pool Boiling
Thermal Management of Microelectronic Equipment, Second Edition