Low cycle fatigue tests were conducted to investigate the cyclic behavior and the fatigue life of type 316LN stainless steel (SS) at various strain rates in 310°C low oxygen-containing water. The strain rates were 0.008, 0.04, and 0.4%/s, and the applied strain amplitude was varied from 0.4 to 1.0%. The dissolved oxygen concentration of the test water was maintained below 1 ppb. The test material in 310°C low oxygen-containing water experienced a primary hardening, followed by a softening. From our data, we confirm the occurrence of the dynamic strain aging (DSA), and finally it can be considered that the primary hardening was brought about by the DSA. The secondary hardening was observed distinctly for 0.4%/s and 0.4%. The improvement of fatigue resistance and the secondary hardening occurred under the same loading condition. Therefore, the improvement of fatigue resistance may be related to the occurrence of the secondary hardening. When the secondary hardening occurs, intense slip bands are replaced by the corduroy structure. The corduroy structure can induce retardation of crack initiation, and ultimately the fatigue resistance is improved. Comparative study between the fatigue life generated in the current study and some prediction models was performed to evaluate the reliability of our data.

This content is only available via PDF.
You do not currently have access to this content.