It is well known that high-level radioactive wastes (HLRAW) are usually vitrified inside electric furnaces. Disadvantages of electric furnaces are their low melting capacity and restrictions on charge preparation. Therefore, a new concept for a high efficiency combined aggregate – submerged combustion melter (SCM)–electric furnace was developed for vitrification of HLRAW. The main idea of this concept is to use the SCM as the primary high-capacity melting unit with direct melt drainage into an electric furnace. The SCM employs a single-stage method for vitrification of HLRAW. The method includes concentration (evaporation), calcination, and vitrification of HLRAW in a single-stage process inside a melting chamber of the SCM. Specific to the melting process is the use of a gas-air or gas-oxygen-air mixture with direct combustion inside a melt. Located inside the melt are high-temperature zones with increased reactivity of the gas phase, the existence of a developed interface surface, and intensive mixing, leading to intensification of the charge melting and vitrification process. The electric furnace clarifies molten glass, thus preparing the high-quality melt for subsequent melt pouring into containers for final storage.

This content is only available via PDF.
You do not currently have access to this content.