The tube rupture accident is one among the most risk-dominant events at the nuclear power plants. Several steam generator tube rupture accidents have occurred at the plants in the past. In this paper the Computational Multi-Fluid Dynamics (CMFD) investigation of the horizontal steam generator thermal-hydraulics during the tube rupture accident is performed. A guillotine of a steam generator U-tube is assumed with choked flow from the primary to the secondary side of the steam generator. Predicted are water and steam velocity fields, steam volume fraction distribution on the steam generator secondary (shell) side, as well as the swell level increase. Obtained multidimensional results are a support to the safety analyses of the steam generator tube rupture accident. Also, they serve as benchmark tests for an assessment of the applicability of one-dimensional horizontal steam generator models, developed by standard safety codes. Numerical simulation is performed with the multidimensional multi-fluid modelling approach. The two-phase flow around steam generator tubes in the bundle is modelled by the porous media approach. Interfacial mass, momentum and energy transfer is modelled with the closure laws, where some of them are specially developed for the conditions of the two-phase flow across tube bundles. The governing equations are solved with the SIMPLE type pressure-correction method that is derived for the conditions of multi-phase flow conditions.

This content is only available via PDF.
You do not currently have access to this content.