The CANDLE burnup strategy is a new reactor burnup concept, where the distributions of fuel nuclide densities, neutron flux, and power density move with the same constant speed along the core axis from bottom to top or from top to bottom of the core and without any change in their shapes. It can be applied easily to the block-type high temperature gas cooled reactor using an appropriate burnable poison mixed with uranium oxide fuel. In the present study, the burnup distribution and the temperature distribution in the core are investigated and their effects on the CANDLE burnup core characteristics are studied. In this study, the natural gadolinium is used as the burnable poison. With the fuel enrichment of 15%, the natural gadolinium concentration of 3.0% and the fuel pin pitch of 6.6cm, the CANDLE burnup is realized with the burning region moving speed of 29 cm/year and the axial half width of power density distribution of 1.5m for uniform group constant case at 900K. When the effect of nuclide change by burnup is considered, the burning region speed becomes 25cm/year and the axial half-width of power density distribution becomes 1.25m. When the temperature distributions effect is considered, the effects on the core characteristics are smaller than the burnup distribution effect. The maximum fuel temperature of the parallel flow case is higher than the counter flow case.
Skip Nav Destination
12th International Conference on Nuclear Engineering
April 25–29, 2004
Arlington, Virginia, USA
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
0-7918-4687-3
PROCEEDINGS PAPER
Burnup and Temperature Effects on CANDLE Burnup of Block-Type High Temperature Gas Cooled Reactor
Yasunori Ohoka,
Yasunori Ohoka
Tokyo Institute of Technology, Tokyo, Japan
Search for other works by this author on:
Hiroshi Sekimoto
Hiroshi Sekimoto
Tokyo Institute of Technology, Tokyo, Japan
Search for other works by this author on:
Yasunori Ohoka
Tokyo Institute of Technology, Tokyo, Japan
Hiroshi Sekimoto
Tokyo Institute of Technology, Tokyo, Japan
Paper No:
ICONE12-49191, pp. 679-686; 8 pages
Published Online:
November 17, 2008
Citation
Ohoka, Y, & Sekimoto, H. "Burnup and Temperature Effects on CANDLE Burnup of Block-Type High Temperature Gas Cooled Reactor." Proceedings of the 12th International Conference on Nuclear Engineering. 12th International Conference on Nuclear Engineering, Volume 1. Arlington, Virginia, USA. April 25–29, 2004. pp. 679-686. ASME. https://doi.org/10.1115/ICONE12-49191
Download citation file:
6
Views
Related Proceedings Papers
Related Articles
Conceptual Structure Design of High Temperature Isolation Valve for High Temperature Gas Cooled Reactor
J. Eng. Gas Turbines Power (November,2011)
Heat Exchanger Design Considerations for Gas Turbine HTGR Power Plant
J. Eng. Power (April,1977)
Small Modular Reactors: Learning From the Past
ASME J of Nuclear Rad Sci (July,2021)
Related Chapters
On the Evaluation of Thermal and Mechanical Factors in Low-Speed Sliding
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Scope of Section I, Organization, and Service Limits
Power Boilers: A Guide to the Section I of the ASME Boiler and Pressure Vessel Code, Second Edition
Characterizing the Resource
Geothermal Heat Pump and Heat Engine Systems: Theory and Practice