Currently, at the Instituto Nacional de Investigaciones Nucleares (National Institute for Nuclear Research) in Mexico, it is being developed a computational code for evaluating the neutronic, thermal and mechanical performance of a fuel element at several different operation conditions. The code is referred as to MCTP (Multigrupos con Temperaturas y Potencia), and is benchmarked against data from the Laguna Verde Nuclear Power Plant (LVNPP). In the code, the neutron flux is approximated by six groups of energy: one group in the thermal region (E < 0.625 eV), four in the resonances region (0.625 eV < E < 0.861 MeV), and one group in the fast region (E > 0.861 MeV). Thus, the code is able to determine the damage to the cladding due to fast neutrons. The temperature distribution is approximated in both axial and radial directions taking into account the changes in the coolant density, for both the single and two-phase regions in a BWR channel. It also considerate the changes in the thermal conductivity of all materials involved for the temperature calculations, as well as the temperature and density effects in the neutron cross sections. In the code, fuel rod burnup is evaluated. Also, plutonium production and poison production from fission. In this work, the neutronic and thermal performance of fuel rods in a 10×10 fuel assembly is evaluated. The fuel elements have a content of 235U. The fuel assembly was introduced to the unit 1 of LVNPP reactor core in the cycle 9 of operation, and will stay in during three cycles. In the analysis of fuel rod performance, the operating conditions are those for the cycle 9 and 10, whereas for the current cycle (cycle 11) the reactor is projected to operate during 460 days. The analysis for cycle 11 uses the actual location of the fuel assembly that will have in the core. The results show that the fuel rods analyzed did not reach the thermal limits during the cycles 9 and 10, as expected, and for cycle 11 the same thermal limits are not predicted to be reached.

This content is only available via PDF.
You do not currently have access to this content.