The PDM [Point Defect Model, D. D. Macdonald, Pure Appl. Chem., 71, 951 (1999)] describes the corrosion of passive metals in aqueous media in terms of the generation and annihilation of point defects at the passive film interfaces. In the current work, we have modified the PDM to provide a comprehensive, atomic scale description of the growth of bilayer passive films on zirconium to simulate the corrosion of Zircaloy fuel cladding in BWRs and PWRs under high burn-up conditions. Two models have been formulated; one comprising a hydride inner (barrier) layer and an oxide outer layer and other comprising an oxide inner layer and an oxide outer layer for PWR and BWR cladding, respectively. Since there are currently no experimental data for the kinetics of defect generation and annihilation at the passive film interfaces for Zircaloys under PWR/BWR conditions, of the type that are required for this analysis, this paper focuses only on exploring and predicting trends in the corrosion behavior of Zircaloy by using prototypical values for various electrochemical parameters. We derive equations for predicting the barrier layer thickness as a function of the applied voltage, pH, porosity, and temperature for both BWR and PWR primary water chemistry conditions.

This content is only available via PDF.
You do not currently have access to this content.