CRIEPI (Central Research Institute of Electric Power Industry) has been developing the 4S reactor (Super Safe, Small and Simple reactor) for application to dispersed energy supply and multipurpose use, with Toshiba Corporation [1,2,3,4]. Electrical output of the 4S reactor is from 10MW to 50MW, and burn-up reactivity loss is regulated by neutron reflectors. The reflector that surrounds the core is gradually lifted up to control the reactivity according to core burn-up. 30year core lifetime without refueling can be achieved with the 10MW 4S (4S-10M) reactor. All temperature feedback reactivity coefficients, including coolant void reactivity, of the 4S-10M are negative during the 30year lifetime. A neutron absorption rod is set at the center of the reactor core with the ultimate shutdown rod. The neutron absorption rod used during the former 14 years is moved to the upper part of the reactor core, and the operation is continued through the latter 16 years. The pressure loss of the reactor core is lower than 2kg/cm2 to enable effective utilization of the natural circulation force, and the average burn-up rate is 76GWD/t. To suppress the influence of the scale disadvantage, loop-type reactor design is one of the candidates for the 4S-10M. The size of the reactor vessel can be miniaturized by adopting the loop type design (4S-10ML). In the 4S-10ML design, integrated equipment which includes primary and secondary electromagnetic pumps (EMPs), an intermediate heat exchanger (IHX) and a steam generator (SG) is adopted and collocated by the reactor vessel. The decay heat removal systems of 4S-10ML consist of the reactor vessel air cooling system (RVACS) and SGACS (a similar system to the RVACS, with air cooling of the outside of the integrated equipment vessel). They are completely passive systems. To decrease the construction cost of the reactor building, a step mat structure and the horizontal aseismic structure are adopted. 4S-10ML has unique features in the cooling systems such as integrated equipment and two separate passive decay heat removal systems which operate at the same time. To evaluate the design feasibility, the transition analyses were executed by the CERES code developed by CRIEPI [5]. In this paper, the design concept of 4S-10ML, and the results of the plant transition analyses are described.

This content is only available via PDF.
You do not currently have access to this content.