In Japan, increase of nuclear plant unit capacity has been promoted to take advantage of economies of scale while further enhancing safety and reliability. As a result, more than 50 units of nuclear power plants are playing important role in electric power generation. However, the factors, such as stagnant growth in the recent electricity demand, limitation in electricity grid capacity and limited in initial investment avoiding risk, will not be in favor of large plant outputs. The reactor concept considered in this paper has a small power output, a compact containment and a simplified BWR configuration with comprehensive safety features. The Compact Containment Boiling Water Reactor (CCR), which is being developed with matured BWR technologies together with innovative systems/components, will provide attractiveness for the energy market in the world due to its flexibility in energy demands as well as in site conditions, its high potential in reducing investment risk and its safety feature facilitating public acceptance. The flexibility is achieved by CCR’s small power output of 300 MWe class and capability of long operating cycle (refueling intervals). The high investment potential is expected from CCR’s simplification/innovation in design such as natural circulation core cooling with the bottom located short core, internal upper entry control rod drives (CRDs) with ring-type dryers and simplified ECCS system with high pressure containment concept. The natural circulation core eliminates recirculation pumps as well as needs for maintenance of such pumps. The internal upper entry CRDs shorten the height of the reactor vessel (RPV) and consequently shorten the primary containment vessel (PCV). The safety feature mainly consists of large water inventory above the core without large penetration below the top of the core, passive cooling system by isolation condenser (IC), passive auto catalytic recombiner and in-vessel retention (IVR) capability. The large inventory increases the system response time in case of design base accidents including loss of coolant accidents. The IC suppresses PCV pressure by steam condensation without any AC power. The recombiner decreases hydrogen concentration in the PCV in case of a severe accident. Cooling the molten core inside the RPV if the core should be damaged by loss of core coolability could attain the IVR. The Compact Containment Boiling Water Reactor (CCR) has possibilities of attaining both economical and safe small reactor by simplified system and compact PCV technologies.

This content is only available via PDF.
You do not currently have access to this content.