One-dimensional linear stability analysis was performed for single-phase lead-bismuth eutectic natural circulation. The Nyquist criterion and a root search method were employed to find the linear stability boundary of both forward and backward circulations. It was found that the natural circulations could be linearly unstable in a high Reynolds number region. Increasing loop friction makes a forward circulation more stable, but destabilizes the corresponding backward circulation under the same heating/cooling conditions. The characteristic wavelength of an unstable disturbance is roughly equal to the entire loop length.
Volume Subject Area:
Next Generation Systems
This content is only available via PDF.
Copyright © 2002
by ASME
You do not currently have access to this content.